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OBJECTIVE—O-linked N-acetylglucosamine (O-GlcNAc) is up-
regulated in diabetic tissues and plays a role in insulin resistance
and glucose toxicity. Here, we investigated the extent of
GlcNAcylation on human erythrocyte proteins and compared
site-specific GlcNAcylation on erythrocyte proteins from diabetic
and normal individuals.

RESEARCH DESIGN AND METHODS—GlcNAcylated eryth-
rocyte proteins or GlcNAcylated peptides were tagged and
selectively enriched by a chemoenzymatic approach and identi-
fied by mass spectrometry. The enrichment approach was com-
bined with solid-phase chemical derivatization and isotopic
labeling to detect O-GlcNAc modification sites and to compare
site-specific O-GlcNAc occupancy levels between normal and
diabetic erythrocyte proteins.

RESULTS—The enzymes that catalyze the cycling (addition and
removal) of O-GlcNAc were detected in human erythrocytes.
Twenty-five GlcNAcylated erythrocyte proteins were identified.
Protein expression levels were compared between diabetic and
normal erythrocytes. Thirty-five O-GlcNAc sites were reproduc-
ibly identified, and their site-specific O-GlcNAc occupancy ratios
were calculated.

CONCLUSIONS—GlcNAcylation is differentially regulated at
individual sites on erythrocyte proteins in response to glycemic
status. These data suggest not only that site-specific O-GlcNAc
levels reflect the glycemic status of an individual but also that
O-GlcNAc site occupancy on erythrocyte proteins may be even-
tually useful as a diagnostic tool for the early detection of
diabetes. Diabetes 58:309–317, 2009

T
he dynamic, enzyme-catalyzed modification of nu-
cleocytoplasmic proteins by O-linked N-acetylglu-
cosamine (O-GlcNAc) has extensive cross talk
with phosphorylation (1) and serves as a nutrient

sensor to regulate signaling, transcription, proteasomal
activity, and stress responses (2–4). GlcNAcylation is
highly sensitive to nutrients and to cellular stress (5–9).
Therefore, we hypothesize that the extent of GlcNAcyla-
tion can be used to evaluate the glucoregulatory status of
people with both subtle and overt glucose dysregulation,
perhaps to identify normal, pre-diabetic individuals and
overtly diabetic individuals (10,11). GlcNAcylation is
nearly as ubiquitous as phosphorylation in all multicellular
eukaryotes and, in many cases, competes with phos-
phorylation for the same or adjacent hydroxyl groups on
serine or threonine residues (1,5). The donor substrate
for GlcNAcylation, uridine diphosphate (UDP)-GlcNAc,
occurs within cells at up to millimolar concentrations—
levels approaching that for ATP. In fact, between 2 and 5%
of all of the glucose used by cells is consumed by the
hexosamine biosynthetic pathway (HBP) with UDP-Glc-
NAc as the major end product (7). Studies from many
laboratories have shown that the HBP, and O-GlcNAc in
particular, plays a key role in insulin resistance and in
glucose toxicity (4–7). Increased GlcNAcylation in adipo-
cytes blocks insulin signaling (12), preventing both glu-
cose uptake and the activation of glycogen synthase
(13,14). Targeted overexpression of O-GlcNAc transferase
(OGT), the enzyme that catalyzes the addition of O-
GlcNAc, in muscle and adipose tissue causes insulin
resistance and hyperleptinemia in mice (15). The extent
of GlcNAcylation on nucleocytoplasmic proteins is
highly sensitive to the concentrations of glucose and
other nutrients surrounding cells and to nearly all types
of cellular stress. The catalytic activity of OGT is highly
sensitive to the intracellular level of UDP-GlcNAc over a
broad range of concentrations (nanomolar to �100
mmol/l) (16). Cycling of O-GlcNAc on many nucleocy-
toplasmic proteins occurs rapidly at a time scale similar
to phosphorylation and is tightly regulated. Cycling of
O-GlcNAc on the same protein may occur at widely
different rates for different attachment sites. Based on
these findings, we hypothesize that changes in the
O-GlcNAc levels on some erythrocyte proteins may be
used diagnostically to monitor the history of cellular
exposure to changes in nutrients, especially glucose,
and to oxidative stress. Because O-GlcNAc on some
proteins turns over rapidly and on others cycles more
slowly, it is possible that both the severity and duration
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of glucose dysregulation in individuals can be estimated
by monitoring the levels of O-GlcNAc simultaneously at
specific sites on several key proteins in erythrocytes.

Here, we report the exploratory phase of a project that
aims at developing an O-GlcNAc–based, clinically useful
diagnostic tool for early detection of diabetes. We show
that a number of human erythrocyte proteins are modified
by O-GlcNAc. By using chemoenzymatic tagging ap-
proaches combined with solid-phase chemical derivatiza-
tion, we enriched, identified, and quantified O-GlcNAc
occupancy ratios on an array of O-GlcNAc sites on eryth-
rocyte proteins from both diabetic and normal individuals.
The data generated in this study not only unambiguously
show that differentially regulated GlcNAcylation exists in
diabetic erythrocytes but also lay the basis for future
studies, including validation of the O-GlcNAc dynamics
using targeted mass spectrometry and the development of
site-specific O-GlcNAc antibodies to be used as diagnostic
tools.

RESEARCH DESIGN AND METHODS

Blood collection and processing. Blood samples were obtained from
normal and diabetic volunteers at the Johns Hopkins Diabetes Center with
written consent. The research was approved by the institutional review board,
consistent with the Helsinki Declaration. Subjects gave written informed
consent. The identity of subjects was masked to those doing assays and
analyzing data, but all authors had access to the primary data. Blood
samples were drawn and collected into a vial containing EDTA. O-
GlcNAcase inhibitor PUGNAc was added into the vial directly before blood
collection to yield a final concentration of �10 �mol/l. Blood cells were
fractionated to isolate erythrocytes using Histopaque-1077 (Sigma-Aldrich)
according to the manufacturer’s instruction. Erythrocytes were lysed by
sonication and centrifuged. Supernatant was recovered, and hemoglobin
was partially depleted by HemogloBind resin (Biotech Support Group)
following the manufacturer’s instructions.
Immunoblotting and immunoprecipitation. Fifty micrograms of
hemoglobin-depleted (partially) erythrocyte proteins were resolved by
SDS-PAGE, transferred to nitrocellulose membrane, and blotted by O-
GlcNAc antibody (CTD 110.6) (1:5,000) (17). Signals were visualized by
enhanced chemiluminescence (Amersham, Piscataway, NJ). For immuno-
precipitation, 1 mg lysates was incubated overnight with protein A/G beads
(Santa Cruz Biotechnology) and antibodies against band 3, catalase,
peroxiredoxin 2, or HSP90 � (Abcam, Cambridge, MA). After 5� washing
with the lysis buffer, bound proteins were eluted by boiling for 5 min in 2�
Laemmili sample buffer.
Chemoenzymatic tagging and enrichment of O-GlcNAcylated proteins.

A previously described protocol was modified and followed to isolate O-
GlcNAc–modified proteins from erythrocytic lysates (18). Briefly, labeling of
terminal O-GlcNAc by mutant galactose transferase (GalT1) (19) was per-
formed overnight at 4°C in the presence of 5 mmol/l MnCl2, 0.5 mmol/l
UDP-Gal-ketone, and 2,000 units/ml PNGase F (New England Biolabs, Ip-
swich, MA). The reaction mixture was then dialyzed into denaturing buffer (5
mol/l urea, 50 mmol/l NH4HCO3, and 100 mmol/l NaCl, pH 7.8). The pH was
adjusted to 4.8 by 0.3 mol/l NaOAc. After removing the insoluble by centrifu-
gation, 3 mmol/l aminoxy biotin (Dojindo, Gaithersburg, MD) was added to the
supernatant and incubated for 24 h at room temperature. The reaction was
quenched by adjusting the pH to 7.9. The reaction buffer was again dialyzed
into denaturing buffer, followed by 50 mmol/l NH4HCO3 and 10 mmol/l NaCl,
pH 7.8. After preclearing with Sepharose 6B beads, the mixture was incubated
with agarose-conjugated streptavidin (Pierce, Rockford, IL) for 2 h. The beads
were extensively washed by low-salt buffer (0.1 mol/l Na2HPO4, 0.15 mol/l
NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% SDS, pH7.5) and
high-salt buffer (0.1 mol/l Na2HPO4, 0.5 mol/l NaCl, and 0.2% Triton X-100, pH
7.5). Bound proteins were eluted by boiling the beads in 50 mmol/l Tris-HCl,
2.5% SDS, 100 mmol/l dithiothreitol (DTT), 10% glycerol, and 5 mmol/l biotin.
O-GlcNAc proteins were resolved in SDS-PAGE and in-gel digested by trypsin
as previously described (20). Peptides were extracted for mass spectrometric
analysis.
Chemoenzymatic tagging and enrichment of O-GlcNAc peptides. Normal
and diabetic erythrocytic lysates (1 mg each) were in-solution digested
overnight at 37°C by 40 �g trypsin. Trypsin was removed by filtering the
solution through a 5-kDa cutoff membrane (Millipore, Billerica, MA). Fifty
units of calf intestine phosphatase (New England Biolabs) were added and

incubated for 4 h in the presence of 1 mmol/l MgCl2. UDP-GalNAz (Invitrogen,
Carlsbad, CA) was added (�2� in excess) and incubated overnight with
mutant GalT1 and 2,000 units/ml PNGase F in 50 mmol/l NH4HCO3. After
reaction, excess UDP-GalNAz was removed by passing the mixture through a
C18 spin column (Nestgroup, Southborough, MA). Peptides were eluted in 80%
acetonitrile and lyophilized. Cycloaddition reaction was performed in a
volume of 20 �l containing biotin–polyethylene glycol (PEG)–alkyne (�3� in
excess, dissolved in DMSO; Invitrogen), 2 mmol/l Tris (2-carboxyethyl)
phosphine hydrochloride, 2 mmol/l Tris [(1-benzyl-1H-1,2,3-triazol-4-yl)
methyl] amine, and 2 mmol/l CuSO4. The reaction mixture was incubated for
12 h at room temperature with gentle shaking. The mixture was diluted into
cation exchange loading buffer. Cation exchange was performed on a strong
cation exchange (SCX) spin column (Nestgroup) according to the manufac-
turer’s instruction. Peptides were eluted in one fraction by high-salt buffer (5
mmol/l KH2PO4, 10% acetonitrile, and 300 mmol/l KCl, pH 3.0). The elutant was
allowed to bind to agarose-conjugated streptavidin for 2 h at room tempera-
ture, followed by extensive washing.
Chemical derivatization and fractionation of enriched peptides. Eight
times the bead volume of BEMAD buffer (1.5% triethylamine and 20 mmol/l
DTT, pH adjusted to 12.0–12.5 by NaOH) was added to the washed avidin
beads and allowed to incubate at 52–54°C for 4 h with shaking. The reaction
was quenched by neutralizing the pH by 2% trifluoroacetic acid. The superna-
tant was desalted by C18 spin column as described above. The derivatized
peptides were fractionated by SCX using a polysulfoethyl A column (0.32 �
100 mm, 5 �m, 300 Å; Column Technology, Fremont, CA) coupled to an
Agilent 1100 series high-performance liquid chromatography (HPLC) (Agilent
Technology, Santa Clara, CA). Fractionation was performed with a 40-min
linear gradient of 0–350 mmol/l KCl (10 mmol/l KH2PO4 and 25% acetonitrile,
pH 2.8) at a flow rate of 5 �l/min. 15 fractions (10 �l each) were collected.
iTRAQ labeling and fractionation of peptides. Peptides from the flow-
through and three washes of the avidin columns were pooled, desalted, and
dried down by speed vacuum. The peptides were resuspended and differen-
tially labeled by iTRAQ reagents (Applied Biosystems, Foster City, CA)
according to the manufacturer’s instruction. After labeling, the peptides were
combined and fractionated similarly by SCX as described above except that a
different polysulfoethyl A column (2.1 � 100 mm, 5 �m, 300 Å; PolyLC,
Columbia, MD) was used instead.
Mass spectrometry. Enriched O-GlcNAcylated proteins were identified by
analysis on an LCQ ion trap mass spectrometer coupled to Magic 2002 HPLC
(Michrom BioResources) and nanospray interface (Proxeon). The instrument
was set in a information-dependent acquisition mode with three MS/MS
(tandem mass spectrometry) followed by one full survey scan. Derivatized
O-GlcNAc peptides were analyzed either on a Qstar Pulsar mass spectrometer
(Applied Biosystems-MDS Sciex, Foster City, CA) or an LTQ-Orbitrap XL, both
coupled with an Eksigent nano–liquid chromatography system (Dublin, CA).
Peptides were desalted on a precolumn (75 �m inner diameter, 3 cm length,
packed with irregular size particles 5–15 �m, 120 Å), and separated on an RF
analytical column packed with 10 cm of C18 beads (5 �m, 120 Å; YMC
ODS-AQ; Wather, Milford, MA). The main HPLC gradient was 5–40% solvent B
(A, 0.1% formic acid; B, 90% acetonitrile and 0.1% formic acid) in 60 min at a
flow rate of 300 nl/min. For Qstar, each survey scan was acquired from m/z

350–1,200 followed by MS/MS of up to three most intense precursors. For
LTQ-Orbitrap, each survey scan (Fourier transform-MS, 60,000 resolution) of
m/z 400–2,000 was followed by collision-assisted dissociation (CAD) MS/MS
(ion trap-MS) of up to five most intense precursor ions. Dynamic exclusion
was enabled with a repeat count of 2 and exclusion duration of 60 s.
Mass spectrometric data analysis. For protein identification, peak lists of
LCQ raw files were extracted and submitted to the Mascot search engine
(version 2.2.0) with the following parameters: SwissProt as database, human
as species, trypsin as enzyme with up to one missed cut, carbamidomethyl (C)
as fixed modification, and oxidation (M) as variable modification. Mass
tolerance was set at 1.2 amu (atomic mass units) for precursors and 0.8 amu
for fragment ions. Raw data from derivatized O-GlcNAc peptides were
similarly searched against SwissProt database using Mascot except that DTT
(ST), DTT-H6(ST), deamination, and oxidation (M) were used as variable
modification, and no fixed modification was selected. Precursor and fragment
ion mass tolerances were 0.3 and 0.15 amu for Qstar and 0.1 and 0.8 amu for
LTQ-Orbitrap, respectively. Quantitation was performed manually by averag-
ing peak areas over the time of elution of given ion pairs. Mass spectrometry
spectra originating from iTRAQ-labeled samples were extracted and searched
against SwissProt database using ProteinPilot software (version 2.0; Applied
Biosystems) with Paragon algorithm. Peptide identifications were further
processed by the Pro Group algorithm (Applied Biosystems), which deter-
mines the minimal set of proteins that can be reported. Protein abundance
ratios were automatically calculated based on ratios of reporter ions originat-
ing from peptides that are distinct to each protein isoform. Relative occupancy
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ratios (RORs) of O-GlcNAc between diabetic (D) and normal (N) samples
were calculated using the following equation.

ROR (D/N) �
[O-GlcNAc

[Protein] � [O-GlcNAc

[Protein]
�

[O-GlcNAc

[O-GlcNAc
�

[Protein]

[Protein]

RESULTS

Erythrocytic proteins are O-GlcNAcylated. We initially
tested the extent of GlcNAcylation in erythrocytic proteins
by using a pan-specific O-GlcNAc antibody (CTD 110.6).
Immunoblot data showed that multiple erythrocytic pro-
teins are O-GlcNAc modified (Fig. 1A). Control immuno-
blotting with O-GlcNAc antibody but in the presence of
excess free GlcNAc yielded little to no signal, suggesting
the specificity of the blotting (data not shown). We next
wanted to assess whether the GlcNAcylation cycles in
erythrocytes. Both OGT and O-GlcNAcase, the enzymes
responsible for O-GlcNAc cycling, are detected in erythro-
cytes (Fig. 1B). The donor substrate for OGT, UDP-
GlcNAc, and O-GlcNAcase activity are also present in the
erythrocytes (K.P., C.S., G.H., unpublished data). These
data suggest that O-GlcNAc cycling may exist in human
erythrocytes.
Selective enrichment and identification of putative
GlcNAcylated proteins. Enrichment is key for mass
spectrometric identification of GlcNAcylated proteins be-
cause of low stoichiometry and ion suppression by unmod-
ified peptide ions in the mass spectrometer (21).
Immunoisolation by pan-specific antibodies suffers from
low efficiency due to relatively low binding affinity of the
antibodies. Using lectins to enrich O-GlcNAc proteins
suffers from low specificity because lectins may bind
strongly to proteins with other forms of glycosylation (rev.
in 21). In this study, a highly selective tagging method was
used (18). This method takes advantage of the mutant
UDP-galactose transferase (Y289L GalT1) (19), which has
an enlarged donor-substrate binding pocket and can ac-
commodate UDP-galactose analogs, in this case, UDP-Gal-
ketone. GalT1 was used to enzymatically tag GlcNAc
modifications on erythrocytic proteins with Gal-ketone.
PNGase F was used to remove N-glycans. After enzymatic
labeling, the ketone group was chemically tagged with an
aminooxy biotin, which allowed capturing of O-GlcNAcy-
lated proteins with streptavidin beads. Enriched proteins
were then eluted, separated by SDS-PAGE, and identified
by an ion trap mass spectrometer after in-gel digestion
(Fig. 2A). By using this method, 25 erythrocyte proteins

were identified as putatively GlcNAcylated (Table 1). A
mock experiment with no UDP-Gal-ketone added yielded
no signal when blotted with horseradish peroxidase–
conjugated avidin, indicating the specificity of the ap-
proach (Fig. 2B). We further confirmed some of the
putative GlcNAc proteins by first immunoprecipitating the
proteins and then Western blotting with O-GlcNAc anti-
body (Fig. 2C). O-GlcNAc antibody competition with ex-
cess free GlcNAc was routinely performed and eliminated
the signals in immunoblotting, documenting the antibody
specificity (data not shown).
Mapping O-GlcNAc sites and site-specific quantitation.

We first attempted to evaluate the overall dynamics of
O-GlcNAc on whole protein levels by immunoprecipitation
and imunoblotting, but no conclusive result was observed.
This may not be surprising because the extent of GlcNAcy-
lation is site-specifically regulated and because O-GlcNAc
antibody may not be sensitive enough to recognize signif-
icant change of O-GlcNAc on one specific site when the
protein is modified on multiple sites. Furthermore, one of
the eventual goals of this study is to develop site specific
O-GlcNAc antibodies. Thus, we wanted to map O-GlcNAc
sites and quantitate O-GlcNAc site specifically. A recently
developed chemoenzymatic tagging method was used to
enrich O-GlcNAc at peptide levels (17,20). Y289L GalT1
was similarly used to label the GlcNAc moieties as de-
scribed previously but on trypsin-digested peptides in-
stead of whole proteins. With increased accessibility of the
enzyme and donor substrate, the labeling with UDP-
GalNAz (an analog of UDP-galactose with azide function
group) is nearly 100% after overnight incubation at 4°C
(21). Biotinylation was performed with the highly efficient
copper-catalyzed cycloaddition reaction or “click” chem-
istry under mild conditions (22) (Fig. 3A). For this chemo-
enzymatic approach using UDP-GalNAz and biotin-PEG-
alkyne, the tags added to the O-GlcNAc peptide exceed
772 Da in mass. Although the biotin-PEG-alkyne tags allow
for highly selective enrichment of GlcNAcylated peptides,
they are problematic; not only do they negatively affect the
ionization efficiency, but the heavy tags also impose other
challenges for mass spectrometric analysis. For example,
fragmentation of the biotin moiety and the PEG linker
arm on CAD makes the MS/MS spectra noisy and
difficult to interpret. In addition, the tagging does not
change the extremely labile nature of the �-O-linkage,
which undergoes neutral loss before peptide backbone

FIG. 1. Erythrocytic proteins are O-GlcNAc modified. Fifteen micrograms of erythrocyte proteins (hemoglobin depleted) were run on a 12.5%
SDS-PAGE gel, transferred, and immunoblotted with antibodies against O-GlcNAc (A), O-GlcNAcase (B, top), or OGT (B, bottom). Different lanes
represent samples from different individuals.
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fragmentation in CAD (Fig. 3B). To resolve these issues,
we modified and combined a previously developed chem-
ical derivatization method called BEMAD (�-elimination
followed by Michael addition with DTT) (23) with the
chemoenzymatic enrichment method. The BEMAD chem-

ical derivatization was performed directly on the solid
phase after the tagged peptides were captured by avidin
beads (Fig. 3C, inset). The derivatized peptides were
released from the solid phase with the O-GlcNAc, and tags
were replaced by a DTT via Michael addition. The result-

FIG. 2. Enrichment and identification of O-GlcNAc–modified erythrocytic proteins. A: Scheme for enriching O-GlcNAc proteins. B: Negative
control of the approach. C: Confirmation of the O-GlcNAc states on several proteins.

TABLE 1
O-GlcNAcylated proteins enriched and identified from human erythrocytes

Protein description
Molecular

weight (Da)
GenInfo

identifier no. Peptide

Catalase 59,947 Gi4557014 7
Aminolevulinic acid dehydrase isoform b 37,718 Gi34577066 3
Protease, serine 2, preprotein 26,927 Gi61097912 11
�-Globin 16,102 Gi4504349 19
Peroxiredoxin 2 isoform a 22,049 Gi32189392 10
Phosphatase and actin regulator 2 69,762 Gi7662248 5
Potassium channel tetramerization domain containing 18 47,223 Gi45387953 3
Organic cation transporter-like 3 61,435 Gi4758852 2
Peroxiredoxin 1 22,324 Gi4505591 8
�2-Globin 15,305 Gi4504345 12
Ubiquitin carrier protein 24,285 Gi7657046 6
Vacuolar protein sorting 13B isoform 2 161,849 Gi35493719 2
�-Globin 16,159 Gi4504351 17
Spectrin-�, erythrocytic 282,024 Gi4507189 11
Hypothetical protein XP_378876 33,510 Gi51458600 2
Spectrin-� isoform a 268,630 Gi67782321 17
Spectrin-� isoform b 247,171 Gi67782319 15
Glycogen phosphorylase 97,487 Gi5032009 2
HSP90 � 98,622 Gi63029937 8
Band 3 anion transport protein 102,013 Gi4507021 9
N-acylaminocyl-peptide hydrolase 82,142 Gi23510451 5
Aldehyde dehydrogenase 1A1 55,454 Gi21361176 4
Attractin isoform 1 163,450 Gi21450861 3
Carbonic anhydrase II 29,246 Gi4557395 12
Glyceraldehyde-3-phosphate dehydrogenase 36,201 Gi7669492 7
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ing DTT modification is stable and can be easily identified
by mass spectrometry. This approach also circumvents the
need to break the strong biotin-avidin interaction with
harsh conditions. Mass spectrometric quantitation of O-
GlcNAc peptides is also readily enabled by isotopic label-
ing with deuterated DTT (DTT-d6), which introduces a
6-Da mass difference between the peptide pairs (e.g.,

normal vs. diabetic). The overall approach is shown as a
flow chart in Fig. 3C and described in detail in RESEARCH

DESIGN AND METHODS. Of course, it is possible that the
apparent changes in GlcNAcylation may arise from differ-
ent dynamics of protein expression or turnover. To ad-
dress this factor, we labeled the flow-through of avidin
chromatography, containing mostly unmodified peptides,

TABLE 2
Information on normal and diabetic blood donors

n Age
Sex

(men/women) A1C (%)
PG

(mg/dl)
Diabetes

duration (years) Type of diabetes

Normal 10 27 	 1.6 6/4 5.7 	 0.1 84 	 2.8 N/A N/A
Diabetic 10 55 	 4.5 5/5 9.5 	 0.5 222 	 28 14 	 3.1 3 type 1, 7 type 2

Data are means 	 SE. PG, highest recorded plasma glucose.

TABLE 3
O-GlcNAc site-mapping and comparison of site-specific O-GlcNAc RORs between normal and diabetic states

Protein name
Accession

no. O-GlcNAc peptides
Peptide
score

Ratio
D:N ROR

Spectrin-� chain, erythrocytic P11277 R.DVSSVELLMK.Y 56 1.0 0.97
K.DLTSVLILQR.K 43 1.1 1.0
K.LLTSQDVSYDEAR.N 87 1.2 1.2
R.AQGLLSAGHPEGEQIIR.L 54 1.0 0.97
R.LLSGEDVGQDEGATR.A 60 1.0 0.97

Carbonic anhydrase 1 P00915 K.YSSLAEAASK.A 58 0.20 0.40
K.ESISVSSEQLAQFR.S 86 0.29 0.57

Hemoglobin subunit-� P68871 R.FFESFGDLSTPDAVMGNPK.V 53 1.8 1.8
K.VLGAFSDGLAHLDNLK.G 75 1.2 1.2
K.GTFATLSELHCDK.L 67 1.1 1.1

Band 3 anion transport protein P02730 K.ASTPGAAAQIQEVK.E 86 0.67 0.66
K.HSHAGELEALGGVKPAVLTR.S 53 0.70 0.69
K.IPPDSEATLVLVGR.A 69 1.1 1.1

Ankyrin-1 P16157 K.LSTPPPLAEEEGLASR.I 98 1.0 0.97
K.VVTDETSFVLVSDK.H 52 1.5 1.5
R.ISEILLDHGAPIQAK.T 49 1.1 1.1
R.DSGEGDTTSLR.L 45 2.4 2.3

Spectrin-� chain P02549 R.VSSQDYGR.D 57 1.0 1.0
R.VILENIASHEPR.I 42 1.0 1.0
R.LSESHPDATEDLQR.Q 50 1.0 1.0

Peroxiredoxin-2 P32119 K.ASAVVDGAFK.E 37 0.74 0.83
R.LSEDYGVLK.T 51 0.82 0.92

Erythrocyte band 4.2 P16452 R.TQATFPISSLGDR.K 37 0.90 0.86
GLUT1 P11166 R.TFDEIASGFR.Q 59 1.1 1.3
Equilibrative nucleoside transporter 1 Q99808 K.DAQASAAPAAPLPER.N 50 1.0 1.0
Protein 4.1 P11171 R.LTSTDTIPK.S 43 1.0 1.1
Glutathione transferase 
-1 P78417 K.GSAPPGPVPEGSIR.I 56 2.5 3.2
Proteasome subunit-� type 5 P28066 K.SSLIILK.Q 54 1.3 1.4
Catalase P04040 R.LSQEDPDYGIR.D 48 1.1 1.2

R.FSTVAGESGSADTVR.D 78 2.1 3.4

�-Synuclein P37840 K.TVEGAGSIAAATGFVK.K 50 1.3 1.6
Aquaporin-1 P29972 R.SSDLTDR.V 42 1.3 1.2
Hemoglobin subunit-� P69905 K.FLASVSTVLTSK.Y 65 1.2 1.2

R.MFLSFPTTK.T 35 2.3 2.2
M.VLSPADK.T 43 1.0 0.96

Data are means of three experiments. Peptide scores listed are the highest scores in three independent experiments. Ratio D:N, ratio between
diabetic and normal samples. ROR, O-GlcNAc ROR. Underlined residues show site of modification.
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with iTRAQ reagents and used it to quantitate relative
changes of protein expression levels. With relative abun-
dance of both O-GlcNAc peptides and corresponding
protein levels, RORs of O-GlcNAc could then been calcu-
lated using a simple equation (see RESEARCH DESIGN AND

METHODS).
Erythrocyte lysates from normal and diabetic blood

donors (10 each; Table 2) were pooled separately and used
as the starting materials after partial depletion of abundant
hemoglobins. Three independent experiments were per-
formed according to the flow chart shown in Fig. 3C. Using
the standard of at least one unique peptide with a �99%
confidence level, 206 erythrocyte proteins were identified
and quantified (supplemental data, available in an online
appendix at http://dx.doi.org/10.2337/db08-0994). Although
most proteins were equally abundant, changes were ob-
served for a few proteins between normal and diabetic
samples (Fig. 3D). Thirty-five O-GlcNAc sites originating
from 17 proteins were identified. The relative occupancy

rates of O-GlcNAc at these sites between diabetic and
normal states were calculated (Table 3). A negative con-
trol sample was first treated with hexosaminidase (an
enzyme that removes GlcNAc) before enrichment and
yielded no identification of a GlcNAcylated protein (Fig.
3E), indicating the specificity of the overall approach.
Differentially regulated GlcNAcylation was observed on
multiple sites originating from several proteins (Table 3;
Fig. 4). This regulation is clearly site specific, as observed
in the cases of ankyrin-1, hemoglobin �, and catalase
(Table 3).

DISCUSSION

Erythrocytes are probably among the simplest of human
cells. For a long time, erythrocytes had been regarded as a
cytoplasm surrounded by a simplified membrane and
consisting mainly of hemoglobins. A recent in-depth anal-
ysis of the erythrocyte proteome indicated that there are

FIG. 4. O-GlcNAc as potential biomarkers for diabetes. Specific O-GlcNAc sites (underlined Ser) on ankyrin-1 (identified and quantified by
QSTAR) and catalase (identified by LTQ-Orbitrap) were upregulated 2.7- and 3.9-fold, respectively. A: Extracted ion chromatogram (XIC). B:
Averaged full-scan spectra during elution time of the ion pairs. C: MS/MS spectra that showed the peptide sequences and mapped DTT attachment
sites.
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likely far more complex cellular processes inside erythro-
cytes than previously known (24). Results presented here
suggest that O-GlcNAc actively cycles on erythrocyte
proteins.

Some of the earliest known GlcNAcylated proteins were
detected in human erythrocytes (25). The challenges of
studying O-GlcNAc by mass spectrometry come from its
low stoichiometry, suppressed ionization efficiency in
presence of unmodified peptides, and intrinsic lability in
gas phase (21). In this study, highly efficient enrichment
methods based on chemoenzymatic tagging addressed the
first two challenges. Solid-phase chemical derivatization
successfully circumvented the lability issue. As the explor-
atory phase of a project aimed at using O-GlcNAc as a
potential biomarker for diagnostic of diabetes, we identi-
fied 25 O-GlcNAc modified proteins, mapped 35 O-GlcNAc
sites, and compared the O-GlcNAc RORs between eryth-
rocyte lysates obtained from normal and diabetic individ-
uals. By using a rigorous mass spectrometric standard, we
also identified 206 erythrocytic proteins and compared
their abundance between normal and diabetic samples. A
few proteins, such as carbonic anhydrase 1 (diabetic:
normal 0.51), glutathione transferase 
 1 (0.79), GLUT1
(0.88), superoxide dismutase (1.21), and isocitrate dehy-
drogenase (1.29), were observed as differentially regulated
in normal and diabetic samples. Although these protein
level dynamics might not be conclusive because of rela-
tively small sample size and inherent variation among
individuals, these observations may reflect hyperglycemia
and increased oxidative stress in diabetic patients.

Clinical diagnosis of diabetes has been evolving since
the diagnostic criteria were first initiated in 1979 by the
National Diabetes Data Group report (26). The glycemic
criteria have been based on levels of glucose that associate
with microvascular, specifically retinopathic, changes
characteristic of diabetes. There are major limitations in
the current criteria used for the diagnosis of diabetes.
Fasting plasma glucose reflects only one aspect of glucose
metabolism, which may be stated as the postabsorptive
balance of hepatic glucose production and peripheral
glucose uptake. It does not reflect the free-living, daily
glycemic patterns, the prolonged fasted state, or the even
postprandial state. The oral glucose tolerance test, in
addition to being clinically cumbersome, is also nonphysi-
ological (assuming most meal ingestion does not include
75 g concentrated sucrose). Assessing glucose tolerance
with the single measure of plasma glucose 2 h after the
oral glucose is therefore of limited usefulness. Another
commonly used test is to assay for A1C. A1C values reflect
an average glycemic status over several months’ time (27).
A1C assay has been recently proposed as a diagnostic
criterion (28).

Perhaps the most apparent functional aspect of O-
GlcNAc is its role in regulation of insulin signaling and as
a mediator of glucose toxicity (2–15,29). Increasing global
GlcNAcylation in adipocytes or muscle blocks insulin
signaling at several points (12,29,30). Moderately in-
creased UDP-GlcNAc levels in muscle induced insulin
resistance (31), whereas overexpression of OGT in muscle
or adipose causes insulin resistance and hyperleptinemia
in transgenic mice (11). Diabetes is an extremely compli-
cated syndrome. Although some controversies still exist
about the roles of O-GlcNAc in diabetes (32), the results
presented in this report along with the rapid cycling nature
of GlcNAcylation and its sensitivity toward changes in
glucose metabolism give site-specific GlcNAcylation on

erythrocyte proteins great potential as biomarker(s) for
detecting the early stages of diabetes.

Given the exploratory nature of the current study,
quantitative measurements were based on relatively small
sample sizes. Completion of the discovery phase will be
followed by a validation phase, for which targeted high-
throughput mass spectrometry will be adopted to deter-
mine the prevalence of O-GlcNAc dynamics on preselected
sites among a large amount of samples. Polyclonal and
monoclonal antibodies against O-GlcNAc on specific sites
will be developed and used to screen a large number of
samples from normal, pre-diabetic, and diabetic patients
to further evaluate the feasibility of this approach. In any
case, this study not only has identified important GlcNAcy-
lated proteins and sites of modification in human erythro-
cytes but also suggests that O-GlcNAc cycling plays a role
in erythrocyte biology.
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