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Abstract

Heparan sulfate (HS) is a linear, sulfated and highly negatively-
charged polysaccharide that plays important roles in many bio-
logical events. As a member of the glycosaminoglycan (GAG)
family, HS is commonly found on mammalian cell surfaces and
within the extracellular matrix. The structural complexities of
natural HS polysaccharides have hampered the comprehension
of their biological functions and structure–activity relationships
(SARs). Although the sulfation patterns and backbone structures
of HS can be major determinants of their biological activities,
obtaining significant amounts of pureHS fromnatural sources for
comprehensive SAR studies is challenging. Chemical and
enzyme-based synthesis can aid in the production of structurally
well-defined HS oligosaccharides. In this review, we discuss
recent innovations enabling the syntheses of large libraries of HS
and how these libraries can provide insights into the structural
preferences of various HS binding proteins.
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Introduction
Heparan sulfate (HS) is an important class of poly-
saccharides that plays roles in a wide range of biological
events, including blood coagulation, cell differentiation,
inflammatory responses, tumor metastasis and viral in-
fections [1,2]. A thorough understanding of the biolog-
ical activities of HS can lead to the development of

novel therapeutics. HS consists of repeating disaccha-
ride units of glucosamine (GlcN)-a-1/4 linked to a
uronic acid, which can be either D-glucuronic acid
(GlcA) or L-iduronic acid (IdoA) [2]. In addition, the 2-
O on uronic acid, 6-O and 3-O on GlcN can be sulfated.
However, these sulfate modifications are often incom-
plete, thus resulting in high heterogeneity of naturally-
existing HS polymers [3,4]. This structural complexity
and heterogeneity have hampered efforts to understand
the detailed structureeactivity relationships (SAR) of
HS. The interactions of HS with its biological receptors

can be highly structurally specific [5,6*]. Hence, it is
critical to obtain pure HS containing a variety of sulfa-
tion sequences and backbone structures to advance the
understanding of HS activities. As it is challenging to
isolate sufficient quantities of defined HS from natural
sources due to its heterogeneity, synthesis is the
preferred method to access HS sequences.

Significant breakthroughs in the synthesis of HS oligo-
saccharides have been accomplished over the last two
decades [7e10*]. HS sequences having the length

approaching those of the HS polysaccharides can now be
prepared [11e13]. On the other hand, to accelerate SAR
studies, the availability of libraries of HS structures
becomes critical. This is highlighted by recent studies
where through screening of libraries of diverse HS se-
quences, key structural features of HS such as 3-O
sulfation and the length of non-sulfated N-acetylation
domain have been identified for interactions with a va-
riety of HS binding proteins including tau, high mobility
group 1 protein, the receptor binding domain of SARS-
CoV-2 spike protein, and chemokines [14e18].
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2 Carbohydrate Synthesis (2024)
Construction of HS libraries is challenging owing to the
numerous sulfation alternatives (N-, 3-O, and 6-O of
GlcN and 2-O position of GlcA/IdoA) and variability in
backbone architecture. Given that the synthesis of a
single HS oligosaccharide can take more than 40 steps,
innovative methods are needed to enable the prepara-
tion of large HS libraries. There have been many
excellent reviews on the synthesis of HS oligosaccha-

rides [7e10*]. Rather than providing a comprehensive
summary on HS synthesis, we focus our discussion on
synthetic strategies toward HS libraries with emphasis
on the advances achieved during the last two years,
including the synthesis of comprehensive libraries of
HS tetrasaccharides.
Early efforts in HS library synthesis
With the diverse HS structures to be prepared in a li-
brary synthesis, a common strategy employed is to
design building blocks with strategically placed protec-
tive groups, which can be selectively removed for dif-
ferential sulfation. An early example is the GlcN-GlcA
disaccharide building block 1, where the hydroxyl
groups were protected with tert-butyldiphenylsilyl
(TBDPS), p-methoxybenzyl (PMB), levulinoyl (Lev),

2-trimethylsilylethoxymethyl (SEM), and acetyl (Ac)
(Scheme 1a) [19*]. These protective groups could be
removed individually without affecting others and the
newly liberated hydroxyl group was sulfated to generate
six monosulfated and partially deprotected HS di-
saccharides. Shortly after, the synthesis of a compre-
hensive HS disaccharide library was accomplished [20].
Scheme 1

a) Structures of HS disaccharide intermediates 1–3; b) Divergent chemical m
library of 48 HS disaccharides; c) Chemical and enzymatic modification of te
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From eight monosaccharides, 16 differentially protected
disaccharides were generated, which were selectively
deprotected and sulfated to produce 48 HS di-
saccharides, thereby covering all possible HS disaccha-
ride sequences [20]. In the second generation approach,
a divergent method was designed to obtain the
comprehensive library of 48 HS-based disaccharides
from just two common orthogonally protected disac-

charide building blocks 2 and 3 (Scheme 1b) [21*].

Going beyond HS disaccharides, the syntheses of 12 HS
oligosaccharides ranging from di-to hexa-saccharides with
varying sulfation patterns through disaccharide modules
were reported [22]. In another study, a divergent strategy
was established combining chemical and enzymatic
methods, which led to the successful preparation of over
20 hexasaccharides [23,24]. Furthermore, another HS li-
brary was obtained by starting with several selectively
protected tetrasaccharides 4 [25*]. Conditions were

identified tomodify the structures through regioselective
O- and N-sulfation, as well as selective desulfation of
sulfates installed. This was followed by enzymatic
modification with 3-O-sulfotransferase-1 to provide 3-O-
sulfated HS derivatives (Scheme 1c). Through these
diversification methods on the tetrasaccharides, a library
of 47 HS oligosaccharides was prepared.
Recent efforts toward the synthesis of
comprehensive HS tetrasaccharide libraries
For more comprehensive SAR studies, a broader chem-
ical space of HS should be covered. For HS
odification of disaccharides 2 and 3 could produce the comprehensive
trasaccharide intermediates 4 led to a library of 47 HS tetrasaccharides.
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Synthesis of comprehensive heparan sulfate library Ramadan et al. 3
tetrasaccharides, considering all variations of N-, 6-O
sulfations of the GlcN and 2-O sulfation of the uronic
acid with the possibilities of having both GlcA and IdoA
in the backbone, there are 256 possible structures. To
produce a library of such a size, multiple hurdles need to
be overcome.

The first significant obstacle is the access to building

blocks. Traditional approaches for building block prep-
aration start from commercially-available mono-
saccharides. These approaches typically require 6e15
synthetic steps to generate monosaccharide building
blocks with protective group patterns suitable for ster-
eoselective glycosylation reactions and post-
glycosylation synthetic manipulations and sulfation.
One innovative strategy to expedite building block
access is to utilize naturally-existing polysaccharides
[26**]. Inspired by a method developed for chondroitin
sulfate synthesis [27], heparin polysaccharide was hy-

drolyzed using aqueous triflic acid followed by esterifi-
cation, NH2 to N3 conversion, and acetylation to give
disaccharide 5 in 20% overall yield (Scheme 2a). Sub-
sequently, 5 was converted to disaccharide 6 in six steps,
from which disaccharide donor 7 and acceptor 8 bearing
a fluorous tag were prepared to produce tetrasaccharide
9 (Schemes 2a and 2b) [28**]. The preparation of the
disaccharides 7 and 8 starting from the heparin poly-
saccharide not only removed the need to perform one
challenging glycosylation, i.e., the 1,2-cis glycosylation
between GlcN and IdoA, but also reduced the number

of synthetic steps needed by approximately 50% as
compared to the traditional strategy of starting from the
monosaccharide building blocks [26**,28**].

A critical consideration in preparing a comprehensive
tetrasaccharide library is reducing the total number of
synthetic steps required to access the large number of
compounds. One strategy is to design key tetra-
saccharides bearing strategically-positioned, orthogo-
nally-deprotectable groups at potential sulfation sites.
As a step toward the comprehensive HS tetrasaccharide
library, tetrasaccharide 10 (Scheme 2c) was synthesized

with a GlcN-GlcA-GlcN-IdoA backbone [29**]. Tetra-
saccharide 10 bears TBDPS, fluorenylmethoxycarbonyl
(Fmoc), 2-naphthylmethyl (Nap), and Lev groups at
the four potential O-sulfation sites, with the two nitro-
gen moieties of the GlcNs differentiated as azide and
trifluoroacetamide respectively. Suitable reaction con-
ditions were established to orthogonally remove any of
these four O-protective groups in good yields without
affecting any other (Scheme 2c). The resulting partially
deprotected tetrasaccharides were subsequently
sulfated and further modified. Through this divergent

approach, a library of 64 HS tetrasaccharides (15e78)
bearing systematically varied N-sulfation, 2-O, and 6-O
sulfations on the GlcN-GlcA-GlcN-IdoA backbone
(Figure 1) was successfully produced at 2e5 mg scale for
each member of the library [29**].
www.sciencedirect.com
A second HS tetrasaccharide library with 64 members
bearing the GlcN-IdoA-GlcN-IdoA backbone was pre-
pared from the key tetrasaccharide intermediate 9
[28**]. Tetrasaccharide 9 was synthesized efficiently
from the disaccharide building blocks derived from
heparin polysaccharide in 3.5 g scale (Schemes 2a and
b). In a similar manner as the synthesis of tetra-
saccharides 15e78, 9 was orthogonally deprotected and

sulfated [28**]. From this single universal building
block 9, 64 HS tetrasaccharides 79e142 (Figure 1)
encompassing all combinations of 2-O-, 6-O-, and N-
sulfations on the tetrasaccharide GlcN-IdoA-GlcN-IdoA
backbone were generated at 5e15 mg scales in
86e95% purities.
Expediting HS library synthesis through
solid-phase and fluorous tag-supported
strategies
Solid-phase-supported glycan synthesis can significantly
streamline the overall process, which is particularly
attractive for library preparation. During the previous
two decades, substantial breakthroughs in solid-phase-
based glycosylation have been achieved [30e36].
While several sulfated carbohydrates have been pre-
pared on solid phase [36], solid-phase-supported
glycosylation toward HS synthesis is underdeveloped.
In 2019, with the automated glycan assembly (AGA)
platform Glyconeer, a hexasaccharide GlcN-glucose
(Glc)-GlcN-Glc-GlcN-Glc backbone 145 was synthe-

sized on solid phase (Scheme 3a) [37]. Disaccharide
glycosyl trichloroacetimidate donors 143 and 144 with
the pre-formed 1,2-cis linkage between GlcN-Glc was
utilized for solid-phase glycosylation. To enhance the
overall glycosylation yields, 5e10 eq of the disaccharide
donor was used and each glycosylation reaction was
performed twice. The excess donor hydrolyzed during
the synthesis was collected on the synthesizer, purified,
and converted back to the trichloroacetimidate donor to
recover some of the high-value building blocks.

In order to overcome some of the limitations of solid-
phase-supported glycosylationdincluding the need for
large excess of the donor to enhance the reaction yield
and the difficulty in monitoring the reaction progressda
significant innovation of the synthesis of the library of
79e142 was the introduction of a fluorous tag (FTag) to
the reducing end of tetrasaccharide 9 (Scheme 2b)
[28**]. The lightly fluorous tag C6F13 in 9 did not
significantly impact the reactivity or solubility of the
building blocks in common organic solvents. As a result,
the solution-phase-based glycosylation reactions could

be performed with the FTag building blocks using near
stoichiometric amounts of the building block, which is a
significant advantage [28**]. Furthermore, the desired
FTag bearing HS glycans could be readily separated
from the non-fluorous impurities through fluorous solid-
phase extraction (FSPE). This greatly reduced the time
Current Opinion in Chemical Biology 2024, 80:102455
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Scheme 2

a) Disaccharide donor 7 and acceptor 8 could be derived from heparin polysaccharides; b) Synthesis of FTag-bearing protected HS tetrasaccharide 9; c)
The key HS tetrasaccharide intermediate 10 could be orthogonally deprotected to expose specific hydroxyl groups to be sulfated for divergent
modifications.
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Figure 1

Structures of the HS tetrasaccharides 15–142 encompassing all combinations of 2-O-, 6-O-, and N-sulfations on the GlcN-GlcA-GlcN-IdoA and GlcN-
IdoA-GlcN-IdoA tetrasaccharide backbones [28**,29**].

Synthesis of comprehensive heparan sulfate library Ramadan et al. 5
needed to purify the highly charged intermediates in HS
synthesis, thus expediting the overall synthetic process.

Another approach to expedite the library preparation is to
immobilize the key synthetic intermediate on solid-
phase support such as Synphase Lanterns for post-
glycosylation transformations [38**]. Performing post-
glycosylation deprotection and sulfations on solid phase
avoids the need to purify the highly polar products. A
CEM Liberty Blue Microwave Automated Synthesizer

was used to automate the entire process of O- and N-
sulfations, deprotection and cleavage on the Lantern. For
example, the HS disaccharide 146 functionalized lantern
(146@lantern) was subjected to Fmoc cleavage, Lev
deprotection, O-sulfation, azide reduction, hydrolysis,
tert-butyldimethylsilyl (TBS) deprotection, and N-sulfa-
tion (Scheme 3b). The synthesizer was programmed to
carry out the 7 synthetic steps from 38 in an automated
fashion in 96 h, leading to 147 in 60% overall yield, which
represents an average of 92% yield for each synthetic
transformation (Scheme 3b). A library of 16 HS
www.sciencedirect.com
disaccharides with diverse sulfation patterns was pre-
pared via this method [38**]. Compared to the tradi-
tional solution phase-based synthesis, this new strategy
significantly improved the overall synthetic efficiency, as
it led to a reduction of over 80% of the number of column
purification steps needed from the disaccha-
ride intermediates.

The comprehensive HS library could yield
critical insights into SAR of HS
oligosaccharides
The availability of two extensive libraries of HS oligo-
saccharides enabled systematic investigations into the
structural determinants important for molecular
recognition by HS-binding proteins [28**,29**]. The
tetrasaccharides were attached onto glycan microarrays,
and their binding interactions were analyzed with
FGF2 and fibroblast growth factor 4 (FGF4), which

play important roles in a wide range of developmental
processes and human diseases such as asthma, cancer,
and cardiovascular disease [39e41]. The results
Current Opinion in Chemical Biology 2024, 80:102455
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Scheme 3

a) Disaccharide building blocks 143 and 144 were used to synthesize hexasaccharide backbone 145 on solid phase. b) HS backbone disaccharide 146
was immobilized on Lanterns, and microwave-assisted automated synthesis was performed to expedite the post-glycosylation modifications, including
sulfation, to form HS disaccharide 147. The reactions indicated in black rectangles were performed by the automated synthesizer.
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revealed that 2-O- sulfation at both IdoA residues is
important for FGF2 recognition: loss of a single 2-O-
sulfate group resulted in a significant reduction in
FGF2 binding {124 (100% of the relative signal in-
tensity) vs 140 (45%) and 126 (39%)}, whereas removal
of both 2-O-sulfate groups eliminated binding {142
(3%)}. Although the N-sulfate groups were both
essential {124 (100%) vs 91 (2%)}, N-sulfation was
more important at the GlcN residue at the non-
reducing end than that closer to the reducing end
{123 (70%) vs 92 (28%)} [28**]. In contrast, the
absence of any or both 6-O-sulfate groups resulted in a
relatively minor decrease in binding {124 (100%) vs
120 (77%), 122 (63%) and 114 (68%)}, demonstrating
that 6-O-sulfation plays a minor role for FGF2 recog-
nition. In addition, a new data analysis method utilizing
the sulfation logos has been established [28**], which
Current Opinion in Chemical Biology 2024, 80:102455
is prompted by the need to analyze and visualize the
extensive data available from the large libraries.

The binding results with FGF4 emphasize the distinct
and opposing contributions of each N-sulfate group in
the tetrasaccharide sequence, as well as critical dis-

tinctions in the HS binding specificities of FGF4 and
FGF2 [28**]. The FGF4 sulfation preferences differ
markedly from those of FGF2, as certain tetra-
saccharides were preferentially recognized by FGF4 but
not FGF2 [e.g., 139 (67% vs. 3%) and 142 (52% vs. 3%)].
These results highlight the exciting possibility of se-
lective regulation of FGFs in vivo by fine tuning the
structures of HS.

Administration of the anti-coagulant drug heparin (a
highly sulfated form of HS) in vivo can trigger heparin-
www.sciencedirect.com
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induced thrombocytopenia (HIT), a life-threatening
side effect [42,43]. HIT is caused by immune re-
sponses against the complex formed by heparin with
Platelet Factor-4 (PF4). To better understand the SAR
of HS binding with PF4, PF4 was screened on the
microarray bearing HS tetrasaccharides [29**]. The
results suggested that the number as well as the location
of sulfates can significantly influence PF4 binding. For

example, while 55 is one of the strongest binders of PF4
identified in the library, compound 50 interacts little
(6.6%) with PF4, despite the fact that both compounds
contain four sulfates. Comparison of the binding of PF4
vs those of FGF2 demonstrated that several compounds
(18, 24, 40, 42, 44, 50, 72, 74 and 76) are strong binders
with FGF2 with low binding to PF4, suggesting they can
be promising leads for FGF2-based therapeutics with
reduced risks of HIT [29**]. These results highlight
the power of a comprehensive library, which can deci-
pher the fine characteristics of the SAR of HS and

provide exciting leads to target important biomed-
ical events.
Conclusion and future prospectives
With the appreciation of the multifaceted biological

functions of HS, it is important to better understand the
SAR of HS with their biological targets. Building on the
synthesis of comprehensive HS disaccharide libraries,
two 64-membered libraries of HS tetrasaccharides have
been successfully prepared, which represents the
largest, most comprehensive HS library to date. The key
innovation in these syntheses includes the design of a
single tetrasaccharide building block that can be diver-
gently modified to produce 64 different HS tetra-
saccharides. Furthermore, the installation of a fluorous
tag on the building blocks significantly aids in the pu-
rification of the highly polar, charged intermediates.

Derivation of the building blocks from naturally existing
heparin polysaccharide and automation, for example
using a solid-phase support such as Synphase Lanterns,
can further expedite the syntheses.

The availability of comprehensive libraries of HS can
provide tremendous opportunities to establish detailed
SARs of HS. The HS tetrasaccharide libraries have
already helped decipher the differential structural
preferences of two members of the FGF protein family.
In addition, lead compounds with high FGF2 but low

PF4 binding have been identified from the library, a
result that suggests their potential as therapeutics with
reduced possibilities for HIT. Nonetheless, the current
library still represents a fraction of the enormous
chemical space of HS. Future efforts will expand on the
facile preparation of the building blocks on large scales
and the design of automated synthetic routes to increase
the number of compounds in the library. Innovative
strategies need to be further developed to enable the
www.sciencedirect.com
generation of even larger HS libraries to probe their
fascinating biological functions.
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