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Cell-surface carbohydrates play important roles in numerous bi-
ological processes through their interactions with various protein-
binding partners. These interactions are made possible by the vast
structural diversity of carbohydrates and the diverse array of
carbohydrate presentations on the cell surface. Among the most
complex and important carbohydrates are glycosaminoglycans
(GAGs), which display varied stereochemistry, chain lengths, and
patterns of sulfation. GAG–protein interactions participate in neuro-
nal development, angiogenesis, spinal cord injury, viral invasion,
and immune response. Unfortunately, little structural information
is available for these complexes; indeed, for the highly sulfated
chondroitin sulfate motifs, CS-E and CS-D, there are no structural
data. We describe here the development and validation of the
GAG-Dock computational method to predict accurately the binding
poses of protein-bound GAGs. We validate that GAG-Dock repro-
duces accurately (<1-Å rmsd) the crystal structure poses for four
known heparin–protein structures. Further, we predict the pose of
heparin and chondroitin sulfate derivatives bound to the axon guid-
ance proteins, protein tyrosine phosphatase σ (RPTPσ), and Nogo
receptors 1–3 (NgR1-3). Such predictions should be useful in under-
standing and interpreting the role of GAGs in neural development
and axonal regeneration after CNS injury.
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Glycans and proteins are important partners in the regulation
of fundamental biological processes such as the immune

response, signal transduction, development, and pathogen in-
vasion (1). An understanding of the wide array of glycan–protein
interactions is critical to mapping the biological functions of gly-
cans and will pave the way for the development of new therapies
that target glycan–protein interactions that contribute to diseases
such as cancer and autoimmune and neurodegenerative disorders
(2). Glycosaminoglycans (GAGs) are a prototypical example: they
are known to interact with more than 300 secreted or membrane-
bound proteins and thereby regulate a broad range of phenomena,
including cell proliferation, migration, differentiation, morpho-
genesis, blood coagulation, angiogenesis, axon guidance, and re-
sponse to CNS injury (3, 4). The GAG family of polysaccharides,
which includes heparan sulfate (HS) and chondroitin sulfate (CS),
is composed of alternating uronic acid and hexosamine units. The
polysaccharides can vary in length, net charge, and the pattern and
degree of sulfation (Fig. 1). Recent studies have shown that the
biological activity of GAGs is often dependent on their sulfation
sequence, with specific, highly sulfated sequences directing inter-
actions with growth factors and other signaling proteins (5–8).
Despite the importance of GAG–protein interactions, there is
remarkably little structural information about these complexes.
This is largely a result of the inherent structural complexity and
heterogeneity of GAGs, which makes it difficult to obtain suffi-
cient quantities of oligosaccharides of defined length and sulfation
pattern for structural studies. As a result, structural data are

available for only a handful of heparin–protein complexes, and no
structural information is available for CS-D, CS-E, and HS motifs.
GAGs play critical roles in neuronal growth and axon re-

generation after spinal cord and other CNS injuries through their
ability to engage transmembrane proteins such as the receptor
protein tyrosine phosphatases protein tyrosine phosphatase σ
RPTPσ and LAR and Nogo receptors (NgRs) NgR1 and NgR3
(8–11). CS and its associated proteoglycans are the principal
inhibitory components of the glial scar, which forms after neu-
ronal damage and acts as a barrier to axon regeneration (12–14).
Blocking the interactions of CS using chondroitinase ABC or an
antibody specific for the CS-E motif can promote axon re-
generation, sprouting, and functional recovery following injury
in vivo (8, 15). Intriguingly, RPTPσ engagement by CS and HS
can exert opposing effects on neuronal growth, with CS inhibit-
ing and HS promoting axon growth (10). However, it is unclear
how GAG binding modulates the activity of RPTPσ and other
cell-surface receptors important for axon guidance and re-
generation. The lack of structural information on physiologically
relevant sulfation motifs has hindered an understanding of
GAGs and efforts to develop tools and therapeutic approaches
that target GAG-mediated processes.
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Glycans and proteins are important partners in the regulation of
fundamental biological processes such as the immune response,
migration, differentiation, morphogenesis, angiogenesis, axon
guidance, and response to CNS injury. Understanding glycan–
protein interactions is critical to mapping the biological functions
of glycans and developing new therapies for diseases such as
cancer, autoimmune disorders, and neurodegenerative disor-
ders. It is difficult to extract information about molecular-level
interactions from experiments, and theory/computation has not
been able to provide definite information to aid the interpreta-
tion of experiments. Our glycosaminoglycan (GAG)-Dock meth-
odology addresses this challenge, furthering understanding of
GAG–protein interactions by predicting the binding structures
and how they depend on glycan structure and predicting precise
effects of mutations that can be used to validate and interpret
the interactions.
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An alternative approach to in vitro structural determination is
computational modeling of GAG–protein complexes. Modeling
GAG–protein interactions is extremely challenging because of
the conformational flexibility of GAGs, the high charge density
of GAGs and GAG-binding sites, and the weak surface com-
plementarity of GAG–protein interactions. Despite these chal-
lenges, we (6) and others (16–18) have used molecular modeling
successfully to predict the sites at which GAGs engage their
target proteins. Some of these methods have limited accuracy in
predicting the bound pose of the ligand or have limited robust-
ness across different systems. Moreover, most of these methods
have not been applied to systems other than the known heparin–
protein structures.
Herein, we report the GAG-Dock method we developed to

accurately model GAG–protein interactions, and we validate this
method against known GAG–protein systems. By using GAG-
Dock, our predicted heparin binding poses were within 0.70–1.51 Å
rmsd of the crystal structures across a diverse set of systems, in-
cluding FGF1, FGF2, FGF2-FGFR1, and α-antithrombin III
(ATIII). We further apply the method to predict the protein-
bound pose of various GAGs, including CS-D and CS-E, to sys-
tems without known structures. Finally, we demonstrate the utility
of these methods to tune the specificity of protein binding, through
in silico mutations, to favor a particular GAG sulfation pattern.

Results and Discussion
To validate the GAG-Dock method for such complex ligands
and binding sites, we applied it to two sets of systems. The first set
consists of the four validation systems for which a crystal structure
including the ligand bound to the specific binding site was known.
The second set of systems consists of three proteins known to bind
to one or more GAG ligands, but for which the specific binding
site was not known (although the general region of binding may be
known). In each case, we followed the procedure of (i) coarse
docking to identify the best regions and (ii) fine docking to identify
the best ligand poses. In both cases, the criterion for selection was
the predicted binding energy.

Case 1: Validation of Systems for Which There Are X-Ray Structures of
the Cocrystal. Five heparin-protein crystal structures have been
solved, providing a means to validate our method. We applied
GAG-Dock to four of these cases. We did not consider the fifth
system, FGF1-FGFR2 [Protein Data Bank (PDB) ID code 1E0O
(19)] because this 10-mer ligand is significantly more demanding
computationally, but otherwise is similar to the other validation
cases. The rmsd comparison for the predicted and crystal ligands
for the validation systems are summarized in SI Appendix, Fig. S1,
showing that GAG-Dock reproduces the ligand positions with
good accuracy. SI Appendix, Figs. S2–S9, compares nonbond in-
teractions between the ligands and side chains within the binding
sites of the validation systems. As can be seen from the plots in SI
Appendix, Fig. S10, most of the ligand–side chain interactions were
faithfully reproduced. A major source of error in the side chain
placement and interaction energies is the lack of waters in our

validation systems. For structures without known binding sites,
such as RPTPσ and NgR, the placement of waters in an apo-
crystal structure cannot be assumed to be correct for a ligand-
bound structure, and even that information is lacking if homol-
ogy modeling is used to generate the protein structure. Therefore,
for a realistic assessment of the validation systems, all waters
present in the crystal structures were removed. As waters often
play a role in ligand binding, removing the waters allows side
chains in the protein to interact more strongly with the ligand.
FGF1. We validated our method by using the crystal structure of
the heparin hexasaccharide bound to two molecules of fibroblast
growth factor 1 [FGF1; PDB ID code 2AXM (20)]. GAG-Dock
correctly identified the binding site, finding that both molecules
of FGF1 interact with heparin at the same site, but with different
specific residues interacting with the ligand for each protein. The
lowest-energy pose was within 0.70 Å rmsd of the crystal struc-
ture ligand (Fig. 2A), calculated by comparing all atoms in the
docked ligand to all atoms (including added hydrogen atoms) in
the X-ray ligand.
As the crystal structure is available, we docked the protein with

all side chains in their experimental conformation. In this case, we
predict the lowest-energy (i.e., strongest-binding) ligand pose to
have an rmsd error of 0.70 Å. Optimizing the ligand and the side
chains for the heparin-binding site of the FGF1 molecules, the
lowest-energy structure led to an rmsd of 2.08 Å compared with the
X-ray structure (SI Appendix, Figs. S2 and S3). We consider that
this is a success. Comparing versus the X-ray pose, we find some
minor differences in the energy contributions (SI Appendix, Fig.
S11). For example, K112 and K113 in chain A and K128 in chain B
made stronger Coulomb and hydrogen bonding interactions with
the ligand in the docked pose than in the X-ray (probably because
the water plays a role in the X-ray structure but not in ours). On
the contrary, R119 was positioned farther from the ligand in the
docked pose, leading to weaker Coulomb interactions with the li-
gand. Overall, all interactions found in the crystal structure were
recapitulated in the predicted structure. Furthermore, the pre-
dicted energy contributions for the ligand interacting with each
residue were consistent between the docked and crystal structures,
indicating that these energy contributions can be used to un-
derstand the relative contributions to binding for each residue of
the protein. Our conclusion is that our GAG-Dock methodology
accurately predicts the ligand pose and the relative importance of
residues toward ligand binding. Our analysis suggests that K112,

Fig. 1. Disaccharide representations of the glycosaminoglycans heparin and
chondroitin sulfate. Chondroitin sulfate is as follows: CS-A (R1, H; R2, SO3

−;
R3, H), CS-C (R1, H; R2, H; R3, SO3

−), CS-D (R1, SO3
−; R2, H; R3, SO3

−), and CS-E
(R1, H; R2, SO3

−; R3, SO3
−).

Fig. 2. Comparison of predicted binding sites for heparin (magenta) to the
X-ray crystal (green) ligand positions for the four validation systems. The rmsd
between predicted and crystal structures of ligand heavy atoms (A) FGF1 (rmsd
of 0.70 Å), (B) FGF2 (rmsd of 0.70 Å), (C) FGF2–FGFR1 (rmsds of 1.51 Å, 0.75 Å),
and (D) α-antithrombin III (rmsd of 0.60 Å).
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K113, K118, R122, and K128 make the most important contribu-
tions to heparin binding (SI Appendix, Fig. S11).
FGF2. For the complex of a heparin tetrasaccharide with FGF2
[PDB ID code 1BFB (21)], heparin makes contacts primarily
with a single molecule of FGF2. However, in the crystal, there
are additional contacts with three nearby FGF2 molecules that
appear to influence the conformation of the ligand. Thus, we
docked the heparin tetrasaccharide to the central protein while
including the three nearby FGFs to describe the conditions of
the crystal structure. Again, GAG-Dock correctly predicts the
binding site and the optimum pose of the crystal ligand (0.70-Å
rmsd; Fig. 2B and SI Appendix, Fig. S4).
For FGF2, the side chains of the binding site differ from the

X-ray structure by 2.09-Å rmsd. In particular, GAG-Dock pre-
dicts conformations of K120, R121, and K130 that lead to
stronger hydrogen bond and Coulombic contributions to binding
than in the X-ray structure (SI Appendix, Fig. S12). However, no
residues had less favorable conformations in the docked struc-
ture compared with the crystal structure. This is expected be-
cause waters present in the experimental structure generally play
a role in binding. Eliminating them usually leads to stronger
binding to the residue side chains. Again, GAG-Dock correctly
predicts the relative importance of all residues involved in
binding, showing that residues K120, R121, K126, K130, and
K136 contribute most strongly to heparin binding (SI Appendix,
Fig. S12).
FGF2–FGFR1. Heparin is known to form a ternary complex with
FGF and its receptor FGFR2. The crystal structure of the
FGF2–FGFR1–heparin complex features a 2:2:2 stoichiometry
[PDB ID code 1FQ9 (22)]. In this structure, each heparin mol-
ecule (an 8-mer and a 6-mer) binds to the positively charged
groove formed at the junction of the proteins, making contacts
with an FGF2 molecule and with the D2 domains of both
FGFR1 molecules. Interestingly, this structure is very similar to
the FGF2–FGFR1 complex without heparin [0.37-Å rmsd (23)],
suggesting in this case that GAG-Dock correctly predicts the
multimeric protein–receptor–GAG complex. We docked both
heparin molecules to regions near the FGF1 molecule and to
both FGFR2 molecules. For each heparin molecule, the pre-
dicted pose correctly identifies the binding pose found in the
crystal structure [with rmsd of 0.75 Å (8-mer) and 1.51 Å (6-
mer); Fig. 2C and SI Appendix, Figs. S5–S8]. The rmsds of side
chains in the binding site were 1.76 (8-mer) and 2.28 Å (6-mer).
The predicted pose accounts for the relative importance of all
residues involved in binding, leading to the same pharmacophore
identified in the crystal structure (SI Appendix, Figs. S13–S17).
α-Antithrombin III. The interaction between heparin and ATIII is
one of the most studied GAG–protein complexes as a result of
its role in blood coagulation (24). The structure of ATIII bound
to a heparin analog [PDB ID code 1E03 (25)] provided a more
challenging test than the other validation cases. With no other
protein species making significant contacts to the ligand, this
structure lacked the constraints of the other validation systems.
Even without such constraints, GAG-Dock predicts the crystal
structure pose with 0.60-Å rmsd (Fig. 2D and SI Appendix, Fig.
S8). The protein side chains in the binding site have an rmsd of
1.96 Å compared with the crystal structure. The predicted pose
accounts for the relative importance of all residues involved in
binding, with residues R13 and K125 contributing more to
binding in the docked pose (SI Appendix, Fig. S18).

Case 2: Predictions for Systems for Which No Cocrystal Structure Is
Available. Unlike heparin, no structural information is available
for chondroitin sulfate motifs CS-D and CS-E, despite increasing
evidence of their biological importance (6, 8, 11). This is because
of the difficulty in obtaining CS oligosaccharides that are purely
one type (e.g., CS-E) for use in structural studies. The recent
identification of RPTPσ and NgR as mediators of CS-induced

axon inhibition (9, 11), and the discovery that HS and CS have
opposing effects on axon morphology (10), highlight the critical
need for structural data to facilitate a mechanistic understanding
of GAG function. Interestingly, RPTPσ and NgR bind to poly-
saccharides enriched in the CS-D, CS-E, or HS epitopes, but not
the lower sulfated motifs, such as CS-A (8, 11). Thus, these
proteins are ideal first systems to test how consistent our docking
predictions are with in vitro binding data. To this end, we pre-
dicted docked structures of various GAGs to RPTPσ, NgR1,
NgR2, and NgR3.
RPTPσ. Although structural data for an RPTPσ–GAG complex
have not been reported, the GAG binding site on the protein is
well understood. A defined GAG-binding site lies on the Ig1
domain of the protein, mediated by the K67, K68, K70, K71,
R96, and R99 residues (9). This region forms a shallow elec-
tropositive cavity on the surface of the protein between β-strands
C-D and E-F (SI Appendix, Fig. S19). The quadruple mutation of
K67, K68, K70, and K71 to alanine has been shown to impair
binding to CS and HS (11). ELISA binding data to natural GAG
polysaccharides indicate that RPTPσ binds strongly to CS-D,
CS-E, and heparin, but not to CS-A. To better understand
RPTPσ–GAG interactions, we docked CS-D, CS-E, and heparin
hexasaccharides to the protein (PDB ID code 2YD2). We also
docked CS-A hexasaccharide but did not find significant binding,
which is consistent with the lack of binding observed experi-
mentally. The docked CS-E and heparin structures are shown in
Fig. 3, with detailed structures shown in SI Appendix, Fig. S20
(CS-E), and SI Appendix, Fig. S21 (heparin).
Indeed, GAG-Dock predicts that the CS and heparin ligands

bind to the previously identified GAG-binding site. CS-E and
heparin interacted with the arginine and lysine residues K67,
K68, K70, K71, R96, and R99 that line the electropositive cavity
found in the Ig1 domain of RPTPσ (SI Appendix, Figs. S22 and
S23). Additionally, GAG-Dock identifies significant contribu-
tions to CS and heparin binding from R76. We can also gain
insights into the relative contribution of these key arginine and
lysine residues toward CS-E and heparin binding. The relative
contributions to binding for these residues for CS-E is R76, K67,
R99, R96, K70, K68, and K71, whereas, for heparin, it is K70,
R99, R76, R96, K67, K68, and K71. In addition, a repulsive
contribution from D100 and E101 were identified for CS-E but
not heparin. GAG-Dock can also identify interactions with polar,
noncharged, residues that contribute to GAG binding, such as
N73, S74, and Q75. These additional interactions with polar
residues would normally not be found from mutational studies,
which tend to focus on charged arginine and lysine residues.
Compared with mutational studies, GAG-Dock allows us to
understand the contribution of all residues in the binding site,
structural information that is not readily obtained through tra-
ditional experimental methods.
These results are consistent with experimental data, and GAG-

Dock predicts similar affinities for CS-E and heparin binding to
RPTPσ. However, binding affinity alone cannot explain the op-
posing effects of CS-E and heparin on neurite outgrowth when
interacting with RPTPσ. These differences may arise from the way
in which CS-E and heparin ligands engage RPTPσ. For heparin,
the predicted structure contains multiple solvent-exposed sulfate
groups, whereas the predicted CS-E structure has all sulfate
groups oriented toward the GAG binding site of RPTPσ. These
differences could allow the heparin–RPTPσ complex to engage an
additional RPTPσ through these solvent-exposed sulfate groups.
Thus, our GAG-Dock method can shed light mechanistic differ-
ences that cannot be explained through binding affinities alone
through a more thorough characterization of GAG binding sites.
NgRs. The NgRs are myelin-associated inhibitors that restrict axonal
growth after injury. A recent study demonstrated that NgR1 and
NgR3, but not NgR2, are involved in GAG-induced axonal inhibition
(11). NgRs are comprised of 8.5 leucine-rich repeat (LRR) domains
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flanked by N-terminal and C-terminal LRR capping domains
(LRR-NT and LRR-CT, respectively) and a C-terminal stalk
(CT stalk) that connects the protein to the membrane via a
glycosylphosphatidylinositol anchor (26). Compared with RPTPσ, less
structural information is known about how NgR binds to GAGs;
however, domain deletion studies suggest that the LRR-CT and CT
stalk regions are required for GAG binding (11). Unfortunately,
available crystal structures of the NgR ectodomain contain the LRR-
NT, LRR, and LRR-CT regions but lack the CT stalk region (27).
To better understand the role of the CT stalk region in GAG

binding, we generated models of the entire ectodomain, including
the previously uncrystallized CT stalk, of NgR isoforms 1–3 by using
Rosetta software (28). We carried out 5 ns of molecular dynamics
(MD) in the presence of explicit water and counter ions to allow the
five models per isoform to relax. We then selected the structure
closest to the average conformation for each model, minimized
it, and selected the lowest-energy structure for each isoform to use
for docking. The electrostatic potential surfaces of these homology
models of the extracellular domain of NgR isoforms 1–3 suggest an
electrostatic basis for the difference in activity between NgR2 and
NgRs 1 and 3 (SI Appendix, Fig. S24). For NgR1 and NgR3, we
solvated the GAG–protein complex and carried out 5 ns of MD at
298K. We did not observe the formation of any new interac-
tions between NgR and the GAG ligand that were not identified
using GAG-Dock. However, we did observe small changes in pro-
tein side-chain conformation that improved binding scores. Unlike
the GAG-binding isoforms, NgR2 lacks significant regions of
electropositive potential, and, in fact, its surface is quite electronegative.

Our binding energies from coarse-level docking with a CS-E tetra-
saccharide to NgR2 predict much weaker interactions (−297.67 kcal/mol),
relative to NgR1 and 3 (−641.27 and −985.46 kcal/mol, respectively),
consistent with experimental findings.
Based on fine-level docking with CS-A, -D, -E, and heparin

hexasaccharides, followed by 5 ns MD relaxation in a full water
box with counter ions, we predict that GAGs bind to regions of
electropositive potential on the CT stalk of NgR1 and NgR3
(Fig. 4). GAG-Dock studies predict that the GAG-binding do-
mains of NgR1 and NgR3 are on different faces of the CT stalk,
although this could be the result of the structural flexibility of
this region of the protein and discrepancies between the model
and the natural state of the protein. We predict that the GAGs
make polar or electrostatic contacts with residues R399, R414,
R415, R416, R421, K422, R424, R426, and R430 on NgR1 and
with residues R346, R350, K354, N355, N358, R360, K364,
K399, R400, K401, K403, and R406 on NgR3. Many of these
residues, particularly residues 414–426 on NgR1 and 399–406 on
NgR3, were shown by mutagenesis studies to be important for
GAG binding (11). Together, these results validate that GAG-
Dock can be used to understand the structural basis for extreme
differences in GAG-binding activity between related proteins
and to identify reliably the pharmacophore even in cases in
which the protein structure is ill-defined. Detailed structures for
CS-A, CS-D, CS-E, and heparin bound to NgR1 are shown in SI
Appendix, Figs. S25–S30. Detailed structures for those ligand
bound to NgR3 are shown in SI Appendix, Figs. S31–S36.

Tuning GAG Binding Through in Silico Mutations. To identify muta-
tions that increase or decrease GAG binding, we applied an in
silico mutations for our predicted CS-A, CS-D, CS-E, and heparin
binding sites for RPTPs, NgR1, and NgR3. The common strategy
of probing the binding site by mutation of arginine or lysine to
alanine leads to a drastic change in character that might result in
significant disruption of the system beyond direct effects on
binding. Instead, we employed subtler mutations to asparagine or
glutamine, which allows the possibility of maintaining some polar
contact with the ligand, but without the benefit of strong charged
interactions. A second common strategy in probing the binding
site is to identify only mutations that decrease binding, which we

Fig. 3. Predicted binding pose for (A) CS-E and (B) heparin bound to the
Ig1 domain of RPTPσ, with docked ligand (magenta) and residues within 5 Å
shown (cyan). Dashed lines indicate hydrogen bonding and salt bridges
between ligand and protein.

Fig. 4. Predicted structures (magenta) for CS-E and heparin bound to
NgR1 and NgR3. Residues within 5 Å of GAG ligand are shown (cyan) with
hydrogen bonding and salt bridges between ligand and protein displayed
(dashed lines). (A) CS-E and (B) heparin bound to NgR1. (C) CS-E and
(D) heparin bound to NgR3.
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consider to be ambiguous, as binding can be lost for many reasons.
Therefore, we sought to identify mutations we expect might in-
crease binding of the ligand to the protein.
We first employed single-residue mutations of each of the res-

idues within the binding sites to asparagine or glutamine while
simultaneously optimizing the remaining side-chain conformations
in the binding site by using SCREAM, followed by 50 steps of
conjugate gradient energy minimization. From these calculations,
we identified mutations that increased or lost hydrogen bonding to
the ligands. Based on these individual mutations, we identified sets
of mutations to enhance or reduce ligand binding for each GAG–

protein complex. We should note that, even though some muta-
tions of arginine or lysine may still lead to increased hydrogen
bonding, there would generally be a net loss of overall binding
energy as a result of the lost Coulomb interactions. Therefore, we
considered only mutations of arginine or lysine to asparagine or
glutamine for our loss-of-binding mutations sets.
For RPTPs, we identified three sets of mutations that improve

binding to CS-A, CS-D, or CS-E, but, interestingly, we found
none to heparin (SI Appendix, Figs. S37 and S38). Perhaps
RPTPσ is already optimized for heparin binding, but not for CS
binding. Mutation set “G1” is specific for CS-E, whereas “G2” is
specific for CS-D and “G3” is nonspecific with the exception of
decreasing heparin binding. Based on single-residue mutations,
we generated four sets of mutations to decrease binding. As all of
these mutations affect the key arginine and lysine residues, they
all result in significant reductions in binding energy, as would
be expected.
For NgR1, we identified four sets of mutations to increase

binding by combining the single-mutation information (SI Ap-
pendix, Figs. S39 and S40). Set G1 improved CS-A and CS-D
binding, but not CS-E or heparin binding. Set G2 improved CS-D
and heparin binding, and set G4 improved binding for every li-
gand except CS-E. However, surprisingly, set G3 did not show
any improvement in binding. It is again interesting that none of
the mutation sets improved CS-E binding. Similarly, for NgR3,
we identified four sets of mutations that increase ligand binding
(SI Appendix, Figs. S41 and S42). Set G1 improved CS-A, CS-E,
and heparin binding but not CS-D binding. Set G2 modestly
improved CS-A and CS-E binding but not CS-D or heparin
binding. Set G3 is the only set to improve binding for all ligands,
and set G4 improved binding for CS-A and heparin only. As with
RPTPs, the four loss-of-binding mutation sets identified for
NgR1 and NgR3 were all effective in reducing ligand binding,
but were nonspecific for any ligand. Importantly, the methods
outlined here could be employed to engineer GAG binding sites
to tune their affinity for a particular GAG structure.

Conclusions
Predicting the binding sites of highly charged GAG ligands with
multiple independent charge sites and numerous possible con-
formations is a formidable challenge. The very large number of
charged sites on the ligands and in the binding site likely leads to
redistributions of the water and ions in the solvent, making po-
larization likely of great importance. Nevertheless, we show here,
for eight independent systems, that the simple GAG-Dock mod-
ifications of the DarwinDock general docking approach accounts
well for the enormous importance of electrostatic interactions and
leads to plausible structures and relative binding energies that help
distinguish the strength of binding for various GAG ligands to a
wide variety of receptors likely to play essential roles in axonal
growth. Given the difficulty of obtaining high-quality cocrystals for
X-ray studies, this simple GAG-Dock computational methodology
may provide the best means for predicting the structure with
sufficient accuracy to help design experimental probes to elucidate
the mechanisms by which GAGs modulate important processes
such as axon growth and regeneration.

Summary of the GAG-Dock Method
Unlike small-molecule ligands often docked successfully with various tech-
niques (29–33), even the truncated GAGs are large (a CS-A 4-mer has 60 heavy
atoms and a net charge of −4; a CS-E 8-mer has 137 heavy atoms and a net
charge of −12). Additionally, they bind to protein surfaces rather than in
pockets and engage proteins primarily through electrostatic interactions.

Our GAG-Dock method is based on the DarwinDock/GenDock method-
ology (29, 30) with modifications to accommodate bulky, highly charged,
surface-binding ligands characteristic of GAGs. Whereas our previous ap-
proach predicted GAG-binding regions within proteins (6), the method
reported here accurately predicts the binding pose, giving deeper insights
into the specific GAG–protein pairwise interactions critical for recognition.
The GAG-binding site is generally not known; hence, it is necessary to sys-
tematically examine all possible binding regions. To do this, we conduct two
rounds of docking. For “coarse docking,” we dock a single GAG conforma-
tion to the entire protein surface to identify likely binding sites. Docking to
the “alanized” structure (see System Preparation) allows us to quickly scan
the entire protein for putative GAG binding sites by optimizing the long
range Coulomb interactions first. For the “fine-grained” approach, we
redock to the best coarse regions to identify specific, strongly bound poses.
In this step, we are more completely sampling conformations and the in-
trinsic flexibility of the GAG ligand by allowing rotation about bonds. Final
structures in the fine-grained approach are subjected to minimization be-
fore scoring to identify the top docked structure for each GAG–protein
complex. These methods are detailed further in the subsequent sections and
in the SI Appendix.

DarwinDock/GenDock. The DarwinDock/GenDock docking method applied
here has been applied recently to predict ligand binding sites for GPCRs such
as OR1G1 (31), AA3R (32), and 5HT2b-R (33). Briefly, it consists of four parts:
i) System preparation. Starting with target protein structures (usually with no
hydrogen atoms), we prepare the systems as follows: (i) add hydrogens to
various heavy atoms using standard bond distances and hydrogen binding
criteria, (ii) assign partial charges to all protein atoms based on general
force-field criteria and to all heteroatoms based on Mulliken charges from
quantum mechanics calculations, (iii) optimize the protein structure using
the force field to minimize the energy, (iv) replace the seven bulky, nonpolar
residues (V, L, I, M, F, Y, and W) with alanine (i.e., alanization) to allow more
complete sampling of the binding site, and (v) generate and select sphere
regions defining the space to be sampled by the ligand.

Generally, the conformations of the protein side chains at the ligand
binding site depend on the location and the conformation of the ligand (the
pose), whereas the location and conformation of the ligand depends on the
side-chain conformations. Our solution to this “chicken/egg” problem is to
alanize the bulky, nonpolar side chains in step iv (above) to allow the ligand
to fully sample available sites on the protein surface in the presence of the
polar interactions. After selecting the best poses, the original nonpolar side
chains are replaced and reoptimized for each pose by using the SCREAM
side-chain optimization method (34) in a process we call “dealanization.”
This allows a different set of protein side chains for each ligand pose.

To select poses that are close enough to the protein to interact favorably,
but not too close to clashwith protein atoms, we generate spheres to describe
the space available for the ligand. This is done with the sphgen program (35),
modified to work with protein surfaces. The spheres are partitioned into
overlapping boxes (“sphere regions”) for docking.
ii) Generation of a complete set of poses. Before evaluating interaction energies
between the ligand and protein, we wanted to sample the complete set of all
possible poses. We do this by iteratively generating poses and then clustering
them into Voronoi-like families using rmsd as the distance metric. This is con-
tinueduntil the number of families stops changing as additional poses are added.
For the cases considered here, we used an rmsd criterion of 2 Å in defining
families, which generally leads to ∼50,000 poses partitioned into ∼2,000 fami-
lies, for each of which we select the “family head” as the central pose. During
the pose-generation process, no energies are calculated. To choose the best
binding region, a quick but systematic coarse docking is first done by using
10,000 poses without attempting the iterative, complete sampling.
iii) Scoring. To reduce computational cost, we wanted tominimize the number
of poses for which an energy must be evaluated. Thus, scoring of the poses is
broken into two steps. First, the protein–ligand interaction energy of each
family head is calculated, and the families are ranked. Then, 90% of the
families are eliminated based on the energy of the family head. Finally, the
binding energies are calculated for all of the family members (i.e., “chil-
dren”) in these 10% best families, and the poses are ranked with only the
best 100 poses selected for further analysis. This hierarchical scoring
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procedure allows for a majority of the poses from the complete set (∼50,000)
to be eliminated without energy calculations.
iv) Optimization and refinement. The 100 best poses from step iii are further
optimized and refined to identify the best poses. The first step is to deal-
anize, i.e., replace and reoptimize the alanized residues with the full hy-
drophobic side chains. Simultaneously, all side chains in the binding site are
reoptimized (i.e., “SCREAMed”) by using SCREAM (34) in the presence of the
specific ligand pose. Thus, we end up with 100 distinct sets of side-chain
conformations, one for each of the 100 ligand poses. Then, each of these
100 systems is energy-minimized for 10 conjugate gradient steps. At this
point, the 100 poses are rescored and 50% are eliminated. Then, another
50 steps of minimization are performed for these 50, with the poses again
rescored. This final round of minimization is skipped during coarse docking.

GAG-Dock Modifications. The small-molecule docking methodology (Dar-
winDock/GenDock) was adapted to GAG structures through the following
changes. Sphere generation for flat protein surfaces requires alterations to the
standard sphgen procedure (35). First, all spheres are generated with the
“dotlim” parameter in sphgen set to −0.9, which allows spheres to be gen-
erated for flat surfaces. Second, to prevent the generation of deeply buried

spheres that would be inaccessible to GAG ligands, a second set of spheres is
generated by using a probe radius of 2.8 Å instead of the normal 1.4 Å. The
normal (1.4-Å probe radius) set of spheres is compared with the restricted
(2.8-Å set), and only spheres within 2.8 Å of the restricted set sphere are kept.
This procedure generates spheres focused on the protein surface while pre-
venting them from being so close to the surface to cause a large number of
clashes with the protein during pose generation.
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